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SOME NON-QUASIREFLEXIVE SPACES HAVING 
UNIQUE ISOMORPHIC PREDUALS* 

BY 

L E O N  B R O W N  A N D  T A K A S H I  ITO 

ABSTRACT 

It is shown that the dual spaces  of  certain James -L indens t r auss  spaces  are 
spaces  which are non-quasireflexive but  have unique isomorphic  preduals.  

A Banach space Y is said to be a predual of a Banach space X if Y*, the dual 

space of Y, is isomorphic (linearly homeomorphic)  to X. We note that X may 

have a predual even though there may n o t  exist any Banach space Z such that 

Z* = X isometrically (see [4]). A Banach space X is said to have a unique 

predual if X has a predual and all preduals are mutually isomorphic. 

The following possible three cases actually occur,  l) X does not have any 

predual: for example, if X is co, C[0, I] or L,[0, 1] (see e.g. [2]). 2) X has a 

unique predual: This happens when X is quasireflexive, that is, the canonical 

embedding of X into the second dual space X** has finite co-dimension (see 

[3]). 3) X has many non-isomorphic preduals: for example, if X is I~, l~ or 

L®[0, l] (see e.g. [l] and [10]). 

It is interesting to find conditions on X which imply uniqueness (or 

non-uniqueness) of preduals of X. For instance, as mentioned in 2), quasireflex- 

ivity of X implies that X has a unique predual; however,  the converse of this 

seems to be an open question. In this paper, we will show that the converse  is 

not true and that the dual spaces of certain James-Lindenstrauss spaces supply 

such examples. 

Before we state our result, let us discuss notation. Capital letters X, Y, Z, A, 

B, etc., will always denote Banach spaces and small letters x, y, z, a, b, etc., will 

denote elements of Banach spaces. We write X - Y if X is isomorphic to Y, 

and write X @ Y for the direct sum of X and Y. We always regard X and X* 

as subspaces, respoetively, of X** and X*** in the canonical way. If A is a 
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subspace of X, A ± denotes the annihilator of A in X*,  if A is a subspace of 

X*,  then A l  denotes the set of elements in X annihilated by A. 

Our result can be stated as follows: 

THEOREM. Suppose a Banach space X with scalar field F (real or complex)  

satisfies the following three conditions, 

a) X is separable, 

b) X * * =  X G A and A -- ll, 

c) X G F - X .  

Then X *  has a unique predual. 

PROOF. We wish to point out that there exist Banach spaces with the above 

three properties. Let  Yo be the James-Lindenstrauss space given in the 

Theorem in [9] (see also Theorem I in [8]) with the property that Yo has a basis 

and Y** = Y o G A  where A -1~. The Banach space X = YOGI2 satisfies the 

above three properties. (We understand that if one follows Lindenstrauss '  

construction of Ie0, one sees that Yo contains 12 as a complemented subspace. 

Therefore  Yo itself satisfies the above three conditions.) 

If Y is a predual of X*,  then Y is isomorphic to a subspace X** which is 

total over  X* and minimal with respect to the property of being total over  X* 

([5]). Therefore  we identify Y as a subspace of X**. Y being minimal total 

implies that X*** = X* G Yl. Similarly we have X*** = X* G X~. Let  P be 

the projection of X*** onto X* with respect to the decomposit ion X*** = 

X * G  y l .  Let  S = PIx~;S:X~-~x *. It is not difficult to see that 

(1) Y± = {z - Sz : z ~ X~}. 

Note that X l = ( X * * / X ) *  ~ A * ~ l* = l~, and observe that the weak* topology 

on X*** restricted to X* is the same as the weak topology on_X* and that the 

weak* topology on X*** restricted to X ~ is the same as the weak* topology on 

X l, where X l is regarded as the dual space of A. 

We wish to show that if X* is given the weak topology, and X ~ is given the 

weak* topology as the dual space of A, then S is continuous (we write S is 

w*-w continuous). S is w*-w continuous if and only if S I8,, • is w*-w 

continuous where Bx~ is the unit ball of X ~. Since X l - A * and A - l, which is 

separable, Bx~ with the weak* topology is metrizable. Therefore  S is w*-w 

continuous if and only if S I B,, ~ is sequentially w*-w continuous. Le t  z,, E Bx~- 

and z, --~ z E Bx~. To complete the proof  of continuity it is sufficient to show that 

every  subsequence of {z,} has a subsequence {z~} such that Sz,o --~ Sz in X*.  

By Grothendieck 's  theorem [7], since X ~ l® and X* is separable (X** is 

separable), S is a weakly compact  operator,  i.e., the weak closure of S(Bx~) is 
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weakly compac t  in X*.  Therefore ,  there exist a subsequence  {z.o} and a point u 

in X *  such that Sz., ~ u in X*.  Hence  z . o -  Sz.o ~ z - u  in X***.  Since 

z.o - Sz.o E Y l  by (1) and Y~ is w* closed in X***,  we have  z - u ~ Y~. Using 

the fact  X ~ n X *  = {0} in X***,  we see u = Sz. This concludes the proof  of  

w * - w  continuity of  S. 

It  is clear that w*-w continuity of  S implies w*-w* continuity of  S. Therefore  

there is an opera tor  T : X - - > A  such that T* = S (we regard X ~ as A*).  More 

precisely we have 

(2) <Tx, z) = <x, Sz) 

for all x E X and z E X ~, where <u, v> for u E X** and v E X*** denotes the 

duality between X** and X***. Next we wish to show that T is a compact 

operator. Since T* = S is weakly compact, by a theorem of Gantmacher [6], T 

is also weakly compact. Note that the range space A of T is isomorphic to I, 

and every weakly compact set in I, is actually strongly compact, which can be 

shown by Eberlein's theorem and Schur's Lemma in I,. Therefore, we can 

conclude that T is a compact operator from X to A. Hence T** is a compact 

operator from X** = X @ A to A ()~ instead of A ** because T is compact) 

such that 

(3) <T**(x + a) ,  z )  = <x + a, S z )  

for  a l l x E X ,  a E A  and z E X  ±. 

Now we can describe Y in terms of T**; 

(4) Y ={x + a  : x  E X ,  a E A  and T x  = a - T**a}.  

This is true because  an e lement  ~ + a  in X** (x ~ X ,  a C A )  belongs 

to Y C ~ x + a E ( Y ± ) ~ C * < x + a , z - S z > = O  for  all z ~ X  ± (see (1)) ¢:~ 

<a - T x  - T * * a ,  z) = 0 for  all z E X ~ (see (3)) ¢~ a - T x  - T * * a  E ( X ± ) l  = X ¢* 

a -  T x -  T * * a  = 0 ( b e c a u s e a  - T x -  T * * a  E A  and A O X  ={0} in X**).  

Denote the identity opera tor  on A by IA and T**IA by T**. Since T** is a 

compac t  opera tor  on A, IA -- T** is a Fredholm operator .  Hence  the range of 

IA - T**, R (I~ - T**), is a closed subspace  of A with finite co-dimension and 

the kernel of IA - T * * ,  N ( I A  - T * * ) ,  is a finite dimensional subspace  of A. Let  

Xo = T - ' ( R ( I A -  T*) ) ,  then Xo is a closed subspace  of X with finite co- 

dimension, so there is a finite dimensional subspace  Z of X such that 

X = X o @ Z .  Let  Ao = N ( I A  - T * * ) .  Since Ao is finite dimensional,  there is a 

closed subspace  B of Ao such that A = A o @ B .  
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Our claim is that Y is complemented  in X**;  

(5) X** = Y O Z q) B. 

It is clear that Z and B are linearly independent.  We need to show that 

Y n ( Z O B )  = {0}. Let  y = z + b in Y n ( Z Q ) B ) .  By (4) ,y = x + a , x  E X o C X  

a n d a E A .  Thus,  w e h a v e x - z = b - a  = 0 b e c a u s e x - z ~ X a n d b - a ~ A .  

We have z = 0 since z E Z and z = x EXo,  and a = 0 since x = 0 implies 

a ~ Ao and a = b ~ B. Thus Y, Z and B are linearly independent.  Choose an 

e lement  x + a  in X** ( x E X ,  a E A ) .  Since X = X o E ) Z  and A =  

A o ~ ) B  there are x o E X o  and zj ~ Z  such that x = X o + Z ,  and a o E A o  and 

b E B such that a = a0 + b. For the element  Xo we can find b ~ E B such that 

Txo = b l -  T**b l .  

Therefore  x + a = xo + z~ + ao + b = (xo + b, + ao) + Z~ + (b - b,)  where 

Xo + bl + ao E Y (because of (4)), z, E Z and b - b~ E B. This completes  the 

proof  of (5). 

On the other hand, f rom the decomposi t ions  X** = X q) A, X = Xo • Z and 

A = A o e B  we have 

(6) X * *  = X o @  A o q )  Z O B. 

By (5) and (6) we see Y ~ X o O A o .  Condition c) of the hypothesis  of the 

Theo rem implies that X G C - X if C is finite dimensional,  which implies that 

if D C X has finite co-dimension in X then D - X .  Consequent ly  Y -  

Xoq)  A o -  X G A o -  X. This completes  the proof  of the theorem. 

We observe  that for  all compac t  operators  T : X----~A, the set described in (4) 

gives a predual  of X*.  

Professor  William B. Johnson pointed out to us that if a separable dual space 

Y* contains l~ as a complemented  subspace then Y* has non-unique preduals. 

The argument  is as follows: Y * -  Y * O  l~ implies that Y • C ( K )  is a predual 

of Y* for  every  compac t  countable  set K. If all these preduals were mutually 

isomorphic,  then Y would be a universal space for  the class {C(K)} and the 

argument  in W. Szlenk's  paper  [I !] would imply that Y* is non-separable.  This 

argument  shows that the space X** in our Theorem does not have a unique 

predual.  However ,  in this case a simpler argument  is that X*  ~ co is a predual  

of X** and it is not isomorphic to X*  because Co cannot  be embedded  in a 

separable dual space. 

A natural question is whether  there must exist non-isomorphic preduals of 

X*  if X** is non-separable  and X is separable.  Note  that the usual preduais of 

l~, l~, L®[0, 1] and the X** in our Theorem satisfy these conditions. 
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Added in proof: 
hypothesis c). 
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Recently we have proved the Theorem without using 
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