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SOME NON-QUASIREFLEXIVE SPACES HAVING
UNIQUE ISOMORPHIC PREDUALS'

BY

LEON BROWN AND TAKASHI ITO

ABSTRACT

It is shown that the dual spaces of certain James-Lindenstrauss spaces are
spaces which are non-quasireflexive but have unique isomorphic preduals.

A Banach space Y is said to be a predual of a Banach space X if Y*, the dual
space of Y, is isomorphic (linearly homeomorphic) to X. We note that X may
have a predual even though there may not exist any Banach space Z such that
Z* = X isometrically (see [4]). A Banach space X is said to have a unique
predual if X has a predual and all preduals are mutually isomorphic.

The following possible three cases actually occur. 1) X does not have any
predual: for example, if X is co, C[0,1] or L,[0,1] (see e.g. [2]). 2) X has a
unique predual: This happens when X is quasireflexive, that is, the canonical
embedding of X into the second dual space X** has finite co-dimension (see
[31). 3) X has many non-isomorphic preduals: for example, if X is /,, I. or
L.{0,1] (see e.g. [1] and [10]).

It is interesting to find conditions on X which imply uniqueness (or
non-uniqueness) of preduals of X. For instance, as mentioned in 2), quasireflex-
ivity of X implies that X has a unique predual; however, the converse of this
seems to be an open question. In this paper, we will show that the converse is
not true and that the dual spaces of certain James-Lindenstrauss spaces supply
such examples.

Before we state our result, let us discuss notation. Capital letters X, Y, Z, A,
B, etc., will always denote Banach spaces and small letters x, y, z, a, b, etc., will
denote elements of Banach spaces. We write X ~ Y if X is isomorphic to Y,
and write X @ Y for the direct sum of X and Y. We always regard X and X*
as subspaces, respeetively, of X** and X*** in the canonical way. If A is a
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subspace of X, A* denotes the annihilator of A in X*, if A is a subspace of
X*, then A, denotes the set of elements in X annihilated by A.

Our result can be stated as follows:

THEOREM. Suppose a Banach space X with scalar field F (real or complex)
satisfies the following three conditions,

a) X is separable,

b) X*=X@Aand A ~ |,,

¢c) XPF~X
Then X* has a unique predual.

Proor. We wish to point out that there exist Banach spaces with the above
three properties. Let Y, be the James-Lindenstrauss space given in the
Theorem in [9] (see also Theorem 1 in [8]) with the property that Y, has a basis
and Y¥*= Y, A where A ~[,. The Banach space X = Y, [, satisfies the
above three properties. (We understand that if one follows Lindenstrauss’
construction of Y, one sees that Y, contains [/, as a complemented subspace.
Therefore Y, itself satisfies the above three conditions.)

If Y is a predual of X*, then Y is isomorphic to a subspace X** which is
total over X* and minimal with respect to the property of being total over X*
([5]. Therefore we identify Y as a subspace of X**. Y being minimal total
implies that X*** = X* P Y. Similarly we have X*** = X*@P X*, Let P be
the projection of X*** onto X* with respect to the decomposition X*** =
X*PY" Let §=P|x;S: X" —=X* Itis not difficult to see that

N Y'={z-Sz:z€ X"}

Note that X* = (X**/X)* ~ A* ~ ¥ = [, and observe that the weak* topology
on X *** restricted to X* is the same as the weak topology on. X* and that the
weak* topology on X *** restricted to X" is the same as the weak™* topology on
X", where X" is regarded as the dual space of A.

We wish to show that if X* is given the weak topology, and X* is given the
weak* topology as the dual space of A, then S is continuous (we write S is
w*-w continuous). S is w*-w continuous if and only if S|p. is w*-w
continuous where Bx- is the unit ball of X*. Since X* ~ A*and A ~ [, which is
separable, Bx- with the weak* topology is metrizable. Therefore S is w*-w
continuous if and only if S | 5.+ is sequentially w*-w continuous. Let z, € Bx+
and z, % z € Bx:. To complete the proof of continuity it is sufficient to show that
every subsequence of {z.} has a subsequence {z.,} such that Sz,, =% Sz in X*.
By Grothendieck’s theorem [7], since X* ~l. and X* is separable (X** is
separable), S is a weakly compact operator, i.e., the weak closure of S(Bx) is
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weakly compact in X*. Therefore, there exist a subsequence {z, } and a point u
in X* such that Sz,, % u in X*. Hence 2, — Sz, 3z —u in X*** Since
Zn, — Sz, E Y by (1) and Y*is w* closed in X***, we have z —u € Y*. Using
the fact X* N X*={0} in X*** we see u = Sz. This concludes the proof of
w*-w continuity of S.

Itis clear that w *-w continuity of S implies w*-w* continuity of S. Therefore
there is an operator T : X—A such that T* =S (we regard X* as A*). More
precisely we have

03] (Tx,z)=(x, Sz)

for all x € X and z € X*, where {(u,v) for u € X** and v € X*** denotes the
duality between X** and X***, Next we wish to show that T is a compact
operator. Since T* = § is weakly compact, by a theorem of Gantmacher [6], T
is also weakly compact. Note that the range space A of T is isomorphic to [,
and every weakly compact set in /, is actually strongly compact, which can be
shown by Eberlein’s theorem and Schur’s Lemma in [,. Therefore, we can
conclude that T is a compact operator from X to A. Hence T** is a compact
operator from X**=X@ A to A (A instead of A ** because T is compact)
such that

3) (T**(x +a),z)={(x +a,Sz)

foral x€EX,a€ A and z € X*.
Now we can describe Y in terms of T*¥;

4) Y={x+a:x€EX,a€Aand Tx =a - T**a}.

This is true because an element x +a in X** (x €X,a €A) belongs
to YOx+ae(Y)., &x+a,z—-82)=0 for all ze€X* (see (1) &
{(a—Tx —T*a,z)=0forallzEX" " (see3)@a—-Tx - T**ae(X").=X&
a—Tx — T**a =0(becausea —Tx —T**a €A and A N X = {0} in X**),

Denote the identity operator on A by I, and T**|, by T%*. Since T%* is a
compact operator on A, I, — T%* is a Fredholm operator. Hence the range of
I, — T%* R(I, — T%*),is a closed subspace of A with finite co-dimension and
the kernel of I, — T%*, N(I. — T%*), is a finite dimensional subspace of A. Let
Xo=T "(R(I, — T%)), then X, is a closed subspace of X with finite co-
dimension, so there is a finite dimensional subspace Z of X such that
X =XoPZ Let Ag= N, — T%*). Since A, is finite dimensional, there is a
closed subspace B of A, such that A = A, B.
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QOur claim is that Y is complemented in X**;

(5) X¥*=YHZPB.

It is clear that Z and B are linearly independent. We need to show that
YN(ZPHB)={0}.Lety=2+binYN(ZEB).Byd),y=x+a,x €EX,CX
and a € A. Thus, we havex —z=b —a =0becausex —z€ X and b —a € A.
We have z =0 since 2€Z and z =x € X,, and a =0 since x =0 implies
a€A,and a =b € B. Thus Y, Z and B are linearly independent. Choose an
element x+a in X* (x€X,a€A). Since X=X,PZ and A=

Ac@P B there are xo€ X, and z, € Z such that x = x,+2z,, and a, € A, and
b € B such that a = a,+ b. For the element x, we can find b, € B such that

TxO = bl - T**b|

Therefore xt+a=xetz,+actb=xe+b,+a))+z,+(b—b) where
Xot+b,+acEY (becauseof (4)), z,€Z and b — b, € B. This completes the
proof of (5).

On the other hand, from the decompositions X** =X P A, X = X, P Z and
A=A, P B we have
©6) X**=XPA-PZDB.

By (5) and (6) we see Y ~ X, Aq. Condition ¢) of the hypothesis of the
Theorem implies that X @ C ~ X if C is finite dimensional, which implies that
if DCX has finite co-dimension in X then D ~ X. Consequently Y ~
XoP Ao~ X P Ao~ X. This completes the proof of the theorem.

We observe that for all compact operators T : X— A, the set described in (4)
gives a predual of X*.

Professor William B. Johnson pointed out to us that if a separable dual space
Y * contains /, as a complemented subspace then Y* has non-unique preduals.
The argument is as follows: Y*~ Y*@ !, implies that Y @ C(K) is a predual
of Y* for every compact countable set K. If all these preduals were mutually
isomorphic, then Y would be a universal space for the class {C(K)} and the
argument in W. Szlenk’s paper [11] would imply that Y* is non-separable. This
argument shows that the space X** in our Theorem does not have a unique
predual. However, in this case a simpler argument is that X* &5 ¢, is a predual
of X** and it is not isomorphic to X* because ¢, cannot be embedded in a
separable dual space.

A natural question is whether there must exist non-isomorphic preduals of
X*if X ** is non-separable and X is separable. Note that the usual preduals of
Iy, l., L-[0,1] and the X** in our Theorem satisfy these conditions.
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Added in proof: Recently we have proved the Theorem without using
hypothesis c).
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