

SOME NON-QUASIREFLEXIVE SPACES HAVING UNIQUE ISOMORPHIC PREDUALS[†]

BY

LEON BROWN AND TAKASHI ITO

ABSTRACT

It is shown that the dual spaces of certain James-Lindenstrauss spaces are spaces which are non-quasireflexive but have unique isomorphic preduals.

A Banach space Y is said to be a predual of a Banach space X if Y^* , the dual space of Y , is isomorphic (linearly homeomorphic) to X . We note that X may have a predual even though there may *not* exist any Banach space Z such that $Z^* = X$ isometrically (see [4]). A Banach space X is said to have a unique predual if X has a predual and all preduals are mutually isomorphic.

The following possible three cases actually occur. 1) X does not have any predual: for example, if X is c_0 , $C[0, 1]$ or $L_1[0, 1]$ (see e.g. [2]). 2) X has a unique predual: This happens when X is quasireflexive, that is, the canonical embedding of X into the second dual space X^{**} has finite co-dimension (see [3]). 3) X has many non-isomorphic preduals: for example, if X is l_1 , l_∞ or $L_\infty[0, 1]$ (see e.g. [1] and [10]).

It is interesting to find conditions on X which imply uniqueness (or non-uniqueness) of preduals of X . For instance, as mentioned in 2), quasireflexivity of X implies that X has a unique predual; however, the converse of this seems to be an open question. In this paper, we will show that the converse is not true and that the dual spaces of certain James-Lindenstrauss spaces supply such examples.

Before we state our result, let us discuss notation. Capital letters X , Y , Z , A , B , etc., will always denote Banach spaces and small letters x , y , z , a , b , etc., will denote elements of Banach spaces. We write $X \sim Y$ if X is isomorphic to Y , and write $X \oplus Y$ for the direct sum of X and Y . We always regard X and X^* as subspaces, respectively, of X^{**} and X^{***} in the canonical way. If A is a

[†] The research of both authors was partially supported by N. S. F. Grant No. 20150.

Received September 20, 1974

subspace of X , A^\perp denotes the annihilator of A in X^* , if A is a subspace of X^* , then A_\perp denotes the set of elements in X annihilated by A .

Our result can be stated as follows:

THEOREM. *Suppose a Banach space X with scalar field F (real or complex) satisfies the following three conditions,*

- a) X is separable,
- b) $X^{**} = X \oplus A$ and $A \sim l_1$,
- c) $X \oplus F \sim X$.

Then X^ has a unique predual.*

PROOF. We wish to point out that there exist Banach spaces with the above three properties. Let Y_0 be the James-Lindenstrauss space given in the Theorem in [9] (see also Theorem 1 in [8]) with the property that Y_0 has a basis and $Y_0^{**} = Y_0 \oplus A$ where $A \sim l_1$. The Banach space $X = Y_0 \oplus l_2$ satisfies the above three properties. (We understand that if one follows Lindenstrauss' construction of Y_0 , one sees that Y_0 contains l_2 as a complemented subspace. Therefore Y_0 itself satisfies the above three conditions.)

If Y is a predual of X^* , then Y is isomorphic to a subspace X^{**} which is total over X^* and minimal with respect to the property of being total over X^* ([5]). Therefore we identify Y as a subspace of X^{**} . Y being minimal total implies that $X^{***} = X^* \oplus Y^\perp$. Similarly we have $X^{***} = X^* \oplus X^\perp$. Let P be the projection of X^{***} onto X^* with respect to the decomposition $X^{***} = X^* \oplus Y^\perp$. Let $S = P|_{X^\perp}; S: X^\perp \rightarrow X^*$. It is not difficult to see that

$$(1) \quad Y^\perp = \{z - Sz : z \in X^\perp\}.$$

Note that $X^\perp = (X^{**}/X)^* \sim A^* \sim l_1^* = l_\infty$, and observe that the weak* topology on X^{***} restricted to X^* is the same as the weak topology on X^* and that the weak* topology on X^{***} restricted to X^\perp is the same as the weak* topology on X^\perp , where X^\perp is regarded as the dual space of A .

We wish to show that if X^* is given the weak topology, and X^\perp is given the weak* topology as the dual space of A , then S is continuous (we write S is w^*-w continuous). S is w^*-w continuous if and only if $S|_{B_{X^\perp}}$ is w^*-w continuous where B_{X^\perp} is the unit ball of X^\perp . Since $X^\perp \sim A^*$ and $A \sim l_1$ which is separable, B_{X^\perp} with the weak* topology is metrizable. Therefore S is w^*-w continuous if and only if $S|_{B_{X^\perp}}$ is sequentially w^*-w continuous. Let $z_n \in B_{X^\perp}$ and $z_n \xrightarrow{w^*} z \in B_{X^\perp}$. To complete the proof of continuity it is sufficient to show that every subsequence of $\{z_n\}$ has a subsequence $\{z_{n_k}\}$ such that $Sz_{n_k} \xrightarrow{w^*} Sz$ in X^* . By Grothendieck's theorem [7], since $X^\perp \sim l_\infty$ and X^* is separable (X^{**} is separable), S is a weakly compact operator, i.e., the weak closure of $S(B_{X^\perp})$ is

weakly compact in X^* . Therefore, there exist a subsequence $\{z_{n_k}\}$ and a point u in X^* such that $Sz_{n_k} \xrightarrow{w^*} u$ in X^* . Hence $z_{n_k} - Sz_{n_k} \xrightarrow{w^*} z - u$ in X^{***} . Since $z_{n_k} - Sz_{n_k} \in Y^\perp$ by (1) and Y^\perp is w^* closed in X^{***} , we have $z - u \in Y^\perp$. Using the fact $X^\perp \cap X^* = \{0\}$ in X^{***} , we see $u = Sz$. This concludes the proof of w^*-w continuity of S .

It is clear that w^*-w continuity of S implies w^*-w^* continuity of S . Therefore there is an operator $T : X \rightarrow A$ such that $T^* = S$ (we regard X^\perp as A^*). More precisely we have

$$(2) \quad \langle Tx, z \rangle = \langle x, Sz \rangle$$

for all $x \in X$ and $z \in X^\perp$, where $\langle u, v \rangle$ for $u \in X^{**}$ and $v \in X^{***}$ denotes the duality between X^{**} and X^{***} . Next we wish to show that T is a compact operator. Since $T^* = S$ is weakly compact, by a theorem of Gantmacher [6], T is also weakly compact. Note that the range space A of T is isomorphic to l_1 and every weakly compact set in l_1 is actually strongly compact, which can be shown by Eberlein's theorem and Schur's Lemma in l_1 . Therefore, we can conclude that T is a compact operator from X to A . Hence T^{**} is a compact operator from $X^{**} = X \oplus A$ to A (A instead of A^{**} because T is compact) such that

$$(3) \quad \langle T^{**}(x + a), z \rangle = \langle x + a, Sz \rangle$$

for all $x \in X$, $a \in A$ and $z \in X^\perp$.

Now we can describe Y in terms of T^{**} ;

$$(4) \quad Y = \{x + a : x \in X, a \in A \text{ and } Tx = a - T^{**}a\}.$$

This is true because an element $x + a$ in X^{**} ($x \in X$, $a \in A$) belongs to $Y \Leftrightarrow x + a \in (Y^\perp)_\perp \Leftrightarrow \langle x + a, z - Sz \rangle = 0$ for all $z \in X^\perp$ (see (1)) $\Leftrightarrow \langle a - Tx - T^{**}a, z \rangle = 0$ for all $z \in X^\perp$ (see (3)) $\Leftrightarrow a - Tx - T^{**}a \in (X^\perp)_\perp = X \Leftrightarrow a - Tx - T^{**}a = 0$ (because $a - Tx - T^{**}a \in A$ and $A \cap X = \{0\}$ in X^{**}).

Denote the identity operator on A by I_A and $T^{**}|_A$ by T_A^{**} . Since T_A^{**} is a compact operator on A , $I_A - T_A^{**}$ is a Fredholm operator. Hence the range of $I_A - T_A^{**}$, $R(I_A - T_A^{**})$, is a closed subspace of A with finite co-dimension and the kernel of $I_A - T_A^{**}$, $N(I_A - T_A^{**})$, is a finite dimensional subspace of A . Let $X_0 = T^{-1}(R(I_A - T_A^{**}))$, then X_0 is a closed subspace of X with finite co-dimension, so there is a finite dimensional subspace Z of X such that $X = X_0 \oplus Z$. Let $A_0 = N(I_A - T_A^{**})$. Since A_0 is finite dimensional, there is a closed subspace B of A_0 such that $A = A_0 \oplus B$.

Our claim is that Y is complemented in X^{**} ;

$$(5) \quad X^{**} = Y \oplus Z \oplus B.$$

It is clear that Z and B are linearly independent. We need to show that $Y \cap (Z \oplus B) = \{0\}$. Let $y = z + b$ in $Y \cap (Z \oplus B)$. By (4), $y = x + a$, $x \in X_0 \subset X$ and $a \in A$. Thus, we have $x - z = b - a = 0$ because $x - z \in X$ and $b - a \in A$. We have $z = 0$ since $z \in Z$ and $z = x \in X_0$, and $a = 0$ since $x = 0$ implies $a \in A_0$ and $a = b \in B$. Thus Y , Z and B are linearly independent. Choose an element $x + a$ in X^{**} ($x \in X$, $a \in A$). Since $X = X_0 \oplus Z$ and $A = A_0 \oplus B$ there are $x_0 \in X_0$ and $z_1 \in Z$ such that $x = x_0 + z_1$, and $a_0 \in A_0$ and $b \in B$ such that $a = a_0 + b$. For the element x_0 we can find $b_1 \in B$ such that

$$Tx_0 = b_1 - T^{**}b_1.$$

Therefore $x + a = x_0 + z_1 + a_0 + b = (x_0 + b_1 + a_0) + z_1 + (b - b_1)$ where $x_0 + b_1 + a_0 \in Y$ (because of (4)), $z_1 \in Z$ and $b - b_1 \in B$. This completes the proof of (5).

On the other hand, from the decompositions $X^{**} = X \oplus A$, $X = X_0 \oplus Z$ and $A = A_0 \oplus B$ we have

$$(6) \quad X^{**} = X_0 \oplus A_0 \oplus Z \oplus B.$$

By (5) and (6) we see $Y \sim X_0 \oplus A_0$. Condition c) of the hypothesis of the Theorem implies that $X \oplus C \sim X$ if C is finite dimensional, which implies that if $D \subset X$ has finite co-dimension in X then $D \sim X$. Consequently $Y \sim X_0 \oplus A_0 \sim X \oplus A_0 \sim X$. This completes the proof of the theorem.

We observe that for all compact operators $T : X \rightarrow A$, the set described in (4) gives a predual of X^* .

Professor William B. Johnson pointed out to us that if a separable dual space Y^* contains l_1 as a complemented subspace then Y^* has non-unique preduals. The argument is as follows: $Y^* \sim Y^* \oplus l_1$ implies that $Y \oplus C(K)$ is a predual of Y^* for every compact countable set K . If all these preduals were mutually isomorphic, then Y would be a universal space for the class $\{C(K)\}$ and the argument in W. Szlenk's paper [11] would imply that Y^* is non-separable. This argument shows that the space X^{**} in our Theorem does not have a unique predual. However, in this case a simpler argument is that $X^* \oplus c_0$ is a predual of X^{**} and it is not isomorphic to X^* because c_0 cannot be embedded in a separable dual space.

A natural question is whether there must exist non-isomorphic preduals of X^* if X^{**} is non-separable and X is separable. Note that the usual preduals of l_1 , l_∞ , $L_\infty[0, 1]$ and the X^{**} in our Theorem satisfy these conditions.

Added in proof: Recently we have proved the Theorem without using hypothesis c).

REFERENCES

1. C. Bessaga and A. Pelczynski, *Space of continuous functions (IV)*, Studia Math. **19** (1960), 53–62.
2. C. Bessaga and A. Pelczynski, *On extreme points in separable conjugate spaces*, Israel J. Math. **4** (1966), 262–264.
3. P. Civin and B. Yood, *Quasi-reflexive spaces*, Proc. Amer. Math. Soc. **8** (1957), 906–911.
4. W. J. Davis and W. B. Johnson, *A renorming of non-reflexive Banach spaces*, Proc. Amer. Math. Soc. **37** (1973), 486–488.
5. J. Dixmier, *Sur un théorème de Banach*, Duke Math. J. **15** (1948), 1057–1071.
6. V. Gantmacher, *Über Schwache Totalstetige Operatoren*, Mat. Sb. N.S. **7** (49) (1940), 301–308.
7. A. Grothendieck, *Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$* , Canad. J. Math. **5** (1953), 129–173.
8. R. C. James, *Separable conjugate spaces*, Pacific J. Math. **10** (1960), 563–571.
9. J. Lindenstrauss, *On James's paper "Separable conjugate spaces"*, Israel J. Math. **9** (1971), 279–284.
10. A. Pelczynski, *On the isomorphism of the spaces m and M* , Bull. Acad. Polon. Sci. **4** (1958), 695–696.
11. W. Szlenk, *The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces*, Studia **30** (1968), 53–61.

WAYNE STATE UNIVERSITY
DETROIT, MICHIGAN 48202 USA